Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Lancet Reg Health Am ; 5: 100090, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-2244257

ABSTRACT

Background: Florida's diverse population composition includes persons from throughout Latin America and the Caribbean. This facilitated an insightful examination of disparities in 2020 Florida COVID-19 deaths not only among racial/ethnic populations in the aggregate (non-Hispanic White, non-Hispanic Black, Hispanic) but also at the level of country/region of origin. Methods: Age-adjusted mortality rates (AAMRs) for 2020 Florida COVID-19 deaths were calculated by race, ethnicity, and country/region of origin along with mean age at death, mean number of comorbidities, and percentage of decedents who had not completed secondary education. Regression-derived mortality rate ratios (MRRs) compared death rates for each racial/ethnic/country-of-origin population to non-Hispanic whites. Findings: The overall AAMR (per 100,000) for 18,342 Florida COVID-19 deaths in 2020 was 55.4, with a much lower AAMR for non-Hispanic Whites (39.3) than for Hispanics (86.8) or Blacks (107.6). Marked differences in AAMRs were observed for specific Black and Hispanic ethnic groups from varied countries/regions of origin. COVID-19 decedents from Mexico and Central America had the highest AAMRs (170.7 and 168.8 per 100,000, respectively), lowest age at death, lowest educational level, and fewest comorbidities. Mean comorbidities were highest for Blacks (all origins) and Cuban Hispanics. Interpretation: Florida Blacks and Hispanics experienced disproportionately high COVID-19 mortality rates throughout 2020, with notable variability based on country/region of origin. Inequities were particularly pronounced for Hispanic populations from Mexico and Central America. To better understand these heterogeneous COVID-19 mortality trends, more nuanced racial/ethnic analyses and detailed data on social determinants of health are needed. Funding: Supplemental funding was provided by the Sylvester Comprehensive Cancer Center at University of Miami Miller School of Medicine. Research reported in this publication was also supported by the National Cancer Institute of the National Institutes of Health under Award Number P30CA240139.

2.
Sci Total Environ ; 857(Pt 1): 159188, 2023 Jan 20.
Article in English | MEDLINE | ID: covidwho-2121792

ABSTRACT

Genomic footprints of pathogens shed by infected individuals can be traced in environmental samples, which can serve as a noninvasive method of infectious disease surveillance. The research evaluates the efficacy of environmental monitoring of SARS-CoV-2 RNA in air, surface swabs and wastewater to predict COVID-19 cases. Using a prospective experimental design, air, surface swabs, and wastewater samples were collected from a college dormitory housing roughly 500 students from March to May 2021 at the University of Miami, Coral Gables, FL. Students were randomly screened for COVID-19 during the study period. SARS-CoV-2 concentration in environmental samples was quantified using Volcano 2nd Generation-qPCR. Descriptive analyses were conducted to examine the associations between time-lagged SARS-CoV-2 in environmental samples and COVID-19 cases. SARS-CoV-2 was detected in air, surface swab and wastewater samples on 52 (63.4 %), 40 (50.0 %) and 57 (68.6 %) days, respectively. On 19 (24 %) of 78 days SARS-CoV-2 was detected in all three sample types. COVID-19 cases were reported on 11 days during the study period and SARS-CoV-2 was also detected two days before the case diagnosis on all 11 (100 %), 9 (81.8 %) and 8 (72.7 %) days in air, surface swab and wastewater samples, respectively. SARS-CoV-2 detection in environmental samples was an indicator of the presence of local COVID-19 cases and a 3-day lead indicator for a potential outbreak at the dormitory building scale. Proactive environmental surveillance of SARS-CoV-2 or other pathogens in multiple environmental media has potential to guide targeted measures to contain and/or mitigate infectious disease outbreaks within communities.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Wastewater/analysis , RNA, Viral , Prospective Studies
3.
The Science of the total environment ; 2022.
Article in English | EuropePMC | ID: covidwho-2046777

ABSTRACT

Genomic footprints of pathogens shed by infected individuals can be traced in environmental samples, which can serve as a noninvasive method of infectious disease surveillance. The research evaluates the efficacy of environmental monitoring of SARS-CoV-2 RNA in air, surface swabs and wastewater to predict COVID-19 cases. Using a prospective experimental design, air, surface swabs, and wastewater samples were collected from a college dormitory housing roughly 500 students from March to May 2021 at the University of Miami, Coral Gables, FL. Students were randomly screened for COVID-19 during the study period. SARS-CoV-2 concentration in environmental samples was quantified using Volcano 2nd Generation-qPCR. Descriptive analyses were conducted to examine the associations between time-lagged SARS-CoV-2 in environmental samples and COVID-19 cases. SARS-CoV-2 was detected in air, surface swab and wastewater samples on 52 (63.4 %), 40 (50.0 %) and 57 (68.6 %) days, respectively. On 19 (24 %) of 78 days SARS-CoV-2 was detected in all three sample types. COVID-19 cases were reported on 11 days during the study period and SARS-CoV-2 was also detected two days before the case diagnosis on all 11 (100 %), 9 (81.8 %) and 8 (72.7 %) days in air, surface swab and wastewater samples, respectively. SARS-CoV-2 detection in environmental samples was an indicator of the presence of local COVID-19 cases and a 3-day lead indicator for a potential outbreak at the dormitory building scale. Proactive environmental surveillance of SARS-CoV-2 or other pathogens in multiple environmental media has potential to guide targeted measures to contain and/or mitigate infectious disease outbreaks within communities. Graphical Unlabelled Image

4.
ACS ES T Water ; 2(11): 1992-2003, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-1927044

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in wastewater has been used to track community infections of coronavirus disease-2019 (COVID-19), providing critical information for public health interventions. Since levels in wastewater are dependent upon human inputs, we hypothesize that tracking infections can be improved by normalizing wastewater concentrations against indicators of human waste [Pepper Mild Mottle Virus (PMMoV), ß-2 Microglobulin (B2M), and fecal coliform]. In this study, we analyzed SARS-CoV-2 and indicators of human waste in wastewater from two sewersheds of different scales: a University campus and a wastewater treatment plant. Wastewater data were combined with complementary COVID-19 case tracking to evaluate the efficiency of wastewater surveillance for forecasting new COVID-19 cases and, for the larger scale, hospitalizations. Results show that the normalization of SARS-CoV-2 levels by PMMoV and B2M resulted in improved correlations with COVID-19 cases for campus data using volcano second generation (V2G)-qPCR chemistry (r s = 0.69 without normalization, r s = 0.73 with normalization). Mixed results were obtained for normalization by PMMoV for samples collected at the community scale. Overall benefits from normalizing with measures of human waste depend upon qPCR chemistry and improves with smaller sewershed scale. We recommend further studies that evaluate the efficacy of additional normalization targets.

5.
Sci Total Environ ; 798: 149177, 2021 Dec 01.
Article in English | MEDLINE | ID: covidwho-1322347

ABSTRACT

Standardized protocols for wastewater-based surveillance (WBS) for the RNA of SARS-CoV-2, the virus responsible for the current COVID-19 pandemic, are being developed and refined worldwide for early detection of disease outbreaks. We report here on lessons learned from establishing a WBS program for SARS-CoV-2 integrated with a human surveillance program for COVID-19. We have established WBS at three campuses of a university, including student residential dormitories and a hospital that treats COVID-19 patients. Lessons learned from this WBS program address the variability of water quality, new detection technologies, the range of detectable viral loads in wastewater, and the predictive value of integrating environmental and human surveillance data. Data from our WBS program indicated that water quality was statistically different between sewer sampling sites, with more variability observed in wastewater coming from individual buildings compared to clusters of buildings. A new detection technology was developed based upon the use of a novel polymerase called V2G. Detectable levels of SARS-CoV-2 in wastewater varied from 102 to 106 genomic copies (gc) per liter of raw wastewater (L). Integration of environmental and human surveillance data indicate that WBS detection of 100 gc/L of SARS-CoV-2 RNA in wastewater was associated with a positivity rate of 4% as detected by human surveillance in the wastewater catchment area, though confidence intervals were wide (ß ~ 8.99 ∗ ln(100); 95% CI = 0.90-17.08; p < 0.05). Our data also suggest that early detection of COVID-19 surges based on correlations between viral load in wastewater and human disease incidence could benefit by increasing the wastewater sample collection frequency from weekly to daily. Coupling simpler and faster detection technology with more frequent sampling has the potential to improve the predictive potential of using WBS of SARS-CoV-2 for early detection of the onset of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , RNA, Viral , Wastewater
6.
Acad Pathol ; 7: 2374289520958200, 2020.
Article in English | MEDLINE | ID: covidwho-853136

ABSTRACT

When South Florida became a hot spot for COVID-19 disease in March 2020, we faced an urgent need to develop test capability to detect SARS-CoV-2 infection. We assembled a transdisciplinary team of knowledgeable and dedicated physicians, scientists, technologists, and administrators who rapidly built a multiplatform, polymerase chain reaction- and serology-based detection program, established drive-through facilities, and drafted and implemented guidelines that enabled efficient testing of our patients and employees. This process was extremely complex, due to the limited availability of needed reagents, but outreach to our research scientists and multiple diagnostic laboratory companies, and government officials enabled us to implement both Food and Drug Administration authorized and laboratory-developed testing-based testing protocols. We analyzed our workforce needs and created teams of appropriately skilled and certified workers to safely process patient samples and conduct SARS-CoV-2 testing and contact tracing. We initiated smart test ordering, interfaced all testing platforms with our electronic medical record, and went from zero testing capacity to testing hundreds of health care workers and patients daily, within 3 weeks. We believe our experience can inform the efforts of others when faced with a crisis situation.

7.
Occup Environ Med ; 77(12): 857-861, 2020 12.
Article in English | MEDLINE | ID: covidwho-695387

ABSTRACT

OBJECTIVES: We estimate the point seroprevalence of SARS-CoV-2 antibodies in the frontline firefighter/paramedic workforce of a South Florida fire department located in the epicentre of a State outbreak. METHODS: A cross-sectional study design was used to estimate the point seroprevalence of SARS-CoV-2 antibodies using a rapid immunoglobulin (Ig)M-IgG combined point-of-care lateral flow immunoassay among frontline firefighters/paramedics collected over a 2-day period, 16-17 April 2020. Fire department personnel were emailed a survey link assessing COVID-19 symptoms and work exposures the day prior to the scheduled drive-through antibody testing at a designated fire station. Off-duty and on-duty firefighter/paramedic personnel drove through the fire station/training facility in their personal vehicles or on-duty engine/rescue trucks for SARS-CoV-2 antibody testing. RESULTS: Among the 203 firefighters/paramedics that make up the fire department workforce, 18 firefighters/paramedics (8.9%) tested positive for SARS-CoV-2 antibodies, of which 8 firefighters/paramedics (3.9%) were IgG positive only, 8 (3.9%) were IgM positive only and 2 (0.1%) were IgG/IgM positive. The positive predictive value (PPV) of the serological test is estimated to be 33.2% and the negative predictive value is 99.3%. The average number of COVID-19 case contacts (ie, within 6 feet of an infected person (laboratory-confirmed or probable COVID-19 patient) for ≥15 min) experienced by firefighters/paramedics was higher for those with positive serology compared with those with negative (13.3 cases vs 7.31 cases; p=0.022). None of the antibody positive firefighters/paramedics reported receipt of the annual influenza vaccine compared with firefighters/paramedics who tested negative for SARS-CoV-2 antibodies (0.0% vs 21.0%; p=0.027). CONCLUSION: Rapid SARS-CoV-2 IgM-IgG antibody testing documented early-stage and late-stage infection in a firefighter workforce providing insight to a broader medical surveillance project on return to work for firefighters/paramedics. Given the relatively low PPV of the serological test used in this study back in April 2020, caution should be used in interpreting test results.


Subject(s)
Allied Health Personnel , Betacoronavirus/immunology , Coronavirus Infections/epidemiology , Firefighters , Immunoglobulin G/blood , Immunoglobulin M/blood , Occupational Exposure , Pneumonia, Viral/epidemiology , Adult , Antibodies, Viral/blood , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Cross-Sectional Studies , Disease Outbreaks , Female , Florida/epidemiology , Humans , Influenza Vaccines , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Population Surveillance , Prevalence , Risk Factors , SARS-CoV-2 , Seroepidemiologic Studies , Workplace , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL